1,266 research outputs found

    A Novel Conceptual Architecture for Person-Centered Health Records

    Get PDF
    Personal health records available to patients today suffer from multiple limitations, such as information fragmentation, a one-size-fits-all approach and a focus on data gathered over time and by institution rather than health conditions. This makes it difficult for patients to effectively manage their health, for these data to be enriched with relevant information from external sources and for clinicians to support them in that endeavor. We propose a novel conceptual architecture for person-centered health record information systems that transcends many of these limitations and capitalizes on the emerging trend of socially-driven information systems. Our proposed personal health record system is personalized on demand to the conditions of each individual patient; organized to facilitate the tracking and review of the patient's conditions; and able to support patient-community interactions, thereby promoting community engagement in scientific studies, facilitating preventive medicine, and accelerating the translation of research findings

    MIRA Modular Interchangeable Robotic Arm

    Get PDF
    Low-cost robotic arms are becoming much more popular in educational settings. The goal of this project is to create a proof of concept for a modular robotic arm. To accomplish this, we have modified an existing arm to use our own modular control system, created a removable joint that can be connected to the end of the arm, and created an end-user interface which allows visualization of the arm’s movement in real time. Creating this arm will make robotics education accessible to a larger number of people, without compromising the potential for each person to gain a high quality understanding of the way robotic arms behave

    Simultaneous X-ray and radio observations of the transitional millisecond pulsar candidate CXOU J110926.4-650224: The discovery of a variable radio counterpart

    Get PDF
    We present the results of simultaneous observations of the transitional millisecond pulsar (tMSP) candidate CXOU J110926.4-650224 with the XMM-Newton satellite and the MeerKAT telescope. The source was found at an average X-ray luminosity of LX 7 × 1033 erg s-1 over the 0.3-10 keV band (assuming a distance of 4 kpc) and displayed a peculiar variability pattern in the X-ray emission, switching between high, low and flaring modes on timescales of tens of seconds. A radio counterpart was detected at a significance of 7.9σ with an average flux density of 33 μJy at 1.28 GHz. It showed variability over the course of hours and emitted a 10-min long flare just a few minutes after a brief sequence of multiple X-ray flares. No clear evidence for a significant correlated or anticorrelated variability pattern was found between the X-ray and radio emissions over timescales of tens of minutes and longer. CXOU J110926.4-650224 was undetected at higher radio frequencies in subsequent observations performed with the Australia Telescope Compact Array, when the source was still in the same X-ray sub-luminous state observed before, down to a flux density upper limit of 15 μJy at 7.25 GHz (at 3σ). We compare the radio emission properties of CXOU J110926.4-650224 with those observed in known and candidate tMSPs and discuss physical scenarios that may account for its persistent and flaring radio emissions

    Mutations in DNA polymerase δ subunit 1 co-segregate with CMD2-type resistance to Cassava Mosaic Geminiviruses

    Full text link
    Cassava mosaic disease (CMD) suppresses cassava yields across the tropics. The dominant CMD2 locus confers resistance to cassava mosaic geminiviruses. It has been reported that CMD2-type landraces lose resistance after regeneration through de novo morphogenesis. As full genome bisulfite sequencing failed to uncover an epigenetic mechanism for this loss of resistance, whole genome sequencing and genetic variant analysis was performed and the CMD2 locus was fine-mapped to a 190 kilobase interval. Collectively, these data indicate that CMD2-type resistance is caused by a nonsynonymous, single nucleotide polymorphism in DNA polymerase δ subunit 1 (MePOLD1) located within this region. Virus-induced gene silencing of MePOLD1 in a CMD-susceptible cassava variety produced a recovery phenotype typical of CMD2-type resistance. Analysis of other CMD2-type cassava varieties identified additional candidate resistance alleles within MePOLD1. Genetic variation of MePOLD1, therefore, could represent an important genetic resource for resistance breeding and/or genome editing, and elucidating mechanisms of resistance to geminiviruses

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Human Cellular Immune Response to the Saliva of Phlebotomus papatasi Is Mediated by IL-10-Producing CD8+ T Cells and Th1-Polarized CD4+ Lymphocytes

    Get PDF
    Cutaneous leishmaniasis affects millions of people worldwide and is caused by protozoa of the genus Leishmania. The parasite is transmitted during sand fly bites. While probing the skin for a blood meal, vectors salivate into the host's skin. Sand fly saliva contains several components that increase hemorrhage and interfere with the host's inflammatory response. Data obtained in mice originally indicate that immunization against saliva protected from leishmaniasis supporting possibility that leishmaniasis could be prevented by a vaccine based on sand fly saliva. Herein we investigated the nature and the importance of the cellular immune response developed against sand fly saliva by individuals at risk of cutaneous leishmaniasis due to Leishmania major. We demonstrated that the immunity against saliva is dominated by the activation of lymphocytes producing a suppressive cytokine called IL-10. These data may preclude the protective effect of sand fly saliva pre-exposure in humans. Further experiments revealed that the production of IL-10 masked the presence of a second kind of lymphocytes producing IFN-γ, a rather protective cytokine. The latter finding highlights the importance of the identification of the proteins activating the latter lymphocytes in order to develop vaccines based on selected proteins from the saliva of sand flies

    Leishmania spp. proteome data sets: a comprehensive resource for vaccine development to target visceral leishmaniasis

    Get PDF
    Visceral leishmaniasis is a neglected infectious disease caused primarily by Leishmania donovani and Leishmania infantum protozoan parasites. A significant number of infections take a fatal course. Drug therapy is available but still costly and parasites resistant to first line drugs are observed. Despite many years of trial no commercial vaccine is available to date. However, development of a cost effective, needle-independent vaccine remains a high priority. Reverse vaccinology has attracted much attention since the term has been coined and the approach tested by Rappuoli and colleagues. This in silico selection of antigens from genomic and proteomic data sets was also adapted to aim at developing an anti-Leishmania vaccine. Here, an analysis of the efforts is attempted and the challenges to be overcome by these endeavors are discussed. Strategies that led to successful identification of antigens will be illustrated. Furthermore, these efforts are viewed in the context of anticipated modes of action of effective anti-Leishmania immune responses to highlight possible advantages and shortcomings

    Academic misconduct, misrepresentation and gaming: a reassessment

    Get PDF
    The motivation for this Special Issue is increasing concern not only with academic misconduct but also with less easily defined forms of misrepresentation and gaming. In an era of intense emphasis on measuring academic performance, there has been a proliferation of scandals, questionable behaviors and devious stratagems involving not just individuals but also organizations, including universities, editors and reviewers, journal publishers, and conference organizers. This introduction first reviews the literature on the prevalence of academic misconduct, misrepresentation and gaming (MMG). The core of the article is organized around a life-cycle model of the production and dissemination of research results. We synthesize the findings in the MMG literature at the level of the investigator or research team, emphasizing that misbehavior extends well beyond fabrication and falsification to include behaviors designed to exaggerate or to mislead readers as to the significance of research findings. MMG is next explored in the post-research review, publication, and post-publication realms. Moving from the individual researcher to the organizational level, we examine how MMG can be engaged in by either journals or organizations employing or funding the researchers. The changing institutional environment including the growth of research assessment exercises, increased quantitative output measurement and greater pressure to publish may all encourage MMG. In the final section, we summarize the main conclusions and offer suggestions both on how we might best address the problems and on topics for future research

    Genetic predisposition to mosaic Y chromosome loss in blood.

    Get PDF
    Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.This research has been conducted using the UK Biobank Resource under application 9905 and 19808. This work was supported by the Medical Research Council [Unit Programme number MC_UU_12015/2]. Full study-specific and individual acknowledgements can be found in the supplementary information
    • …
    corecore